Group Theory in the Bedroom and Other Mathematical Diversions

Group Theory in the Bedroom  and Other Mathematical Diversions Author Brian Hayes
ISBN-10 1429938579
Year 2008-04-01
Pages 288
Language en
Publisher Hill and Wang

An Award-Winning Essayist Plies His Craft Brian Hayes is one of the most accomplished essayists active today—a claim supported not only by his prolific and continuing high-quality output but also by such honors as the National Magazine Award for his commemorative Y2K essay titled "Clock of Ages," published in the November/December 1999 issue of The Sciences magazine. (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces—including "Clock of Ages"—embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.


Groups Author R. P. Burn
ISBN-10 0521347939
Year 1987-09-03
Pages 242
Language en
Publisher Cambridge University Press

Following the same successful approach as Dr. Burn's previous book on number theory, this text consists of a carefully constructed sequence of questions that will enable the reader, through participation, to study all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationships to 3-dimensional isometries are covered, and the climax of the book is a study of the crystallographic groups, with a complete analysis of these groups in two dimensions.

An Introduction to Tensors and Group Theory for Physicists

An Introduction to Tensors and Group Theory for Physicists Author Nadir Jeevanjee
ISBN-10 9783319147949
Year 2015-03-11
Pages 305
Language en
Publisher Birkhäuser

The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews

Group Theory

Group Theory Author Predrag Cvitanović
ISBN-10 9781400837670
Year 2008-07-01
Pages 288
Language en
Publisher Princeton University Press

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.

Topics in Geometric Group Theory

Topics in Geometric Group Theory Author Pierre de la Harpe
ISBN-10 0226317196
Year 2000-10-15
Pages 310
Language en
Publisher University of Chicago Press

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

Visual Complex Functions

Visual Complex Functions Author Elias Wegert
ISBN-10 9783034801805
Year 2012-08-30
Pages 360
Language en
Publisher Springer Science & Business Media

This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.


Groups Author Camilla R. Jordan
ISBN-10 9780340610459
Year 1994-01
Pages 207
Language en
Publisher Butterworth-Heinemann

Introduction to mathematical groups

Group Theory for Chemists

Group Theory for Chemists Author Kieran C Molloy
ISBN-10 9780857092410
Year 2010-12-21
Pages 232
Language en
Publisher Elsevier

The basics of group theory and its applications to themes such as the analysis of vibrational spectra and molecular orbital theory are essential knowledge for the undergraduate student of inorganic chemistry. The second edition of Group Theory for Chemists uses diagrams and problem-solving to help students test and improve their understanding, including a new section on the application of group theory to electronic spectroscopy. Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory to vibrational spectroscopy, with chapters covering topics such as reducible representations and techniques of vibrational spectroscopy. In part three, group theory as applied to structure and bonding is considered, with chapters on the fundamentals of molecular orbital theory, octahedral complexes and ferrocene among other topics. Additionally in the second edition, part four focuses on the application of group theory to electronic spectroscopy, covering symmetry and selection rules, terms and configurations and d-d spectra. Drawing on the author’s extensive experience teaching group theory to undergraduates, Group Theory for Chemists provides a focused and comprehensive study of group theory and its applications which is invaluable to the student of chemistry as well as those in related fields seeking an introduction to the topic. Provides a focused and comprehensive study of group theory and its applications, an invaluable resource to students of chemistry as well as those in related fields seeking an introduction to the topic Presents diagrams and problem-solving exercises to help students improve their understanding, including a new section on the application of group theory to electronic spectroscopy Reviews the essentials of symmetry and group theory, including symmetry, point groups and representations and the application of group theory to vibrational spectroscopy

Fundamentals of Group Theory

Fundamentals of Group Theory Author Steven Roman
ISBN-10 9780817683016
Year 2011-10-26
Pages 380
Language en
Publisher Springer Science & Business Media

Fundamentals of Group Theory provides a comprehensive account of the basic theory of groups. Both classic and unique topics in the field are covered, such as an historical look at how Galois viewed groups, a discussion of commutator and Sylow subgroups, and a presentation of Birkhoff’s theorem. Written in a clear and accessible style, the work presents a solid introduction for students wishing to learn more about this widely applicable subject area. This book will be suitable for graduate courses in group theory and abstract algebra, and will also have appeal to advanced undergraduates. In addition it will serve as a valuable resource for those pursuing independent study. Group Theory is a timely and fundamental addition to literature in the study of groups.

Group Theory in a Nutshell for Physicists

Group Theory in a Nutshell for Physicists Author A. Zee
ISBN-10 9781400881185
Year 2016-03-29
Pages 632
Language en
Publisher Princeton University Press

Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

A First Course in Group Theory

A First Course in Group Theory Author Cyril F. Gardiner
ISBN-10 9781461381174
Year 2012-12-06
Pages 228
Language en
Publisher Springer Science & Business Media

One of the difficulties in an introductory book is to communicate a sense of purpose. Only too easily to the beginner does the book become a sequence of definitions, concepts, and results which seem little more than curiousities leading nowhere in particular. In this book I have tried to overcome this problem by making my central aim the determination of all possible groups of orders 1 to 15, together with some study of their structure. By the time this aim is realised towards the end of the book, the reader should have acquired the basic ideas and methods of group theory. To make the book more useful to users of mathematics, in particular students of physics and chemistry, I have included some applications of permutation groups and a discussion of finite point groups. The latter are the simplest examples of groups of partic ular interest to scientists. They occur as symmetry groups of physical configurations such as molecules. Many ideas are discussed mainly in the exercises and the solutions at the end of the book. However, such ideas are used rarely in the body of the book. When they are, suitable references are given. Other exercises test and reinfol:'ce the text in the usual way. A final chapter gives some idea of the directions in which the interested reader may go after working through this book. References to help in this are listed after the outline solutions.

A Book of Abstract Algebra

A Book of Abstract Algebra Author Charles C Pinter
ISBN-10 9780486134796
Year 2012-05-11
Pages 400
Language en
Publisher Courier Corporation

Accessible but rigorous, this outstanding text encompasses all of elementary abstract algebra's standard topics. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. 1990 edition.

Dynamic Group Piano Teaching

Dynamic Group Piano Teaching Author Pamela Pike
ISBN-10 9781315280356
Year 2017-05-12
Pages 252
Language en
Publisher Routledge

Dynamic Group-Piano Teaching provides future teachers of group piano with an extensive framework of concepts upon which effective and dynamic teaching strategies can be explored and developed. Within fifteen chapters, it encompasses learning theory, group process, and group dynamics within the context of group-piano instruction. This book encourages teachers to transfer learning and group dynamics theory into classroom practice. As a piano pedagogy textbook, supplement for pedagogy classes, or resource for graduate teaching assistants and professional piano teachers, the book examines learning theory, student needs, assessment, and specific issues for the group-piano instructor.

Real Infinite Series

Real Infinite Series Author Daniel D. Bonar
ISBN-10 0883857456
Year 2006-04-06
Pages 264
Language en
Publisher MAA

An introductory treatment of infinite series of real numbers, from basic definitions and tests to advanced results.